- [24] Program TB-LMTO: M. van Schilfgaarde, T. A. Paxton, O. Jepsen, O. K. Andersen, Max-Planck-Institut für Festkörperforschung, Stuttgart, Germany, Version 4.6, 1994.
- [25] A. D. Becke, K. E. Edgecombe, J. Chem. Phys. 1990, 992, 5397; A.
 Savin, R. Nesper, S. Wengert, T. F. Fässler, Angew. Chem. 1997, 109, 1892; Angew. Chem. Int. Ed. Engl. 1997, 36, 1808.
- [26] R. Hoffmann, Solids and Surfaces, A Chemists View of Bonding in Extended Structures, VCH, New York, 1988.
- [27] R. J. Gillespie, Molecular Geometry, Van Nostrand Reinhold, London, 1972.
- [28] T. F. Fässler, U. Häussermann, R. Nesper, Chem. Eur. J. 1995, 1, 625.

The Hydrogen-Bonded Framework of the First Anti-Zeotype: [{(H₂NEt₂)₂}₂(CuCl₄)][AlCl₄]**

James D. Martin* and Brian R. Leafblad

Zeolites are the archetypal class of porous framework materials whose host-guest interactions have been tailored to a variety of industrial processes such as catalysis and gas separation.^[1] Zeolites are constructed from silicate and aluminate building blocks in which the tetrahedral cations are covalently linked by two-coordinate anions (oxygen) into a plethora of micro- and mesoporous frameworks.^[2-4] In these systems the size and shape of the pore structure is controlled during synthesis by molecular or cationic templating species. By use of charge-matching techniques, numerous oxide-based framework materials analogous to zeolites have been reported, including frameworks rich in transition metals such as the recently reported cobalt phosphates.^[5] We recently demonstrated an extension of such charge-matching techniques to include substitution of framework anions, as well as cations, in the preparation of halozeotypes $[Cu_nZn_{m-n}Cl_{2m}]^{n-}$, which are direct analogues of aluminosilicates.^[6] The preparation of other non-oxide zeotype materials has recently been reviewed.^[4] Here we describe the first example of an "inverse" charge-matching strategy, by which an anti-zeotype framework structure is constructed from the linkage of tetrahedral anions by two-coordinate cations.

The synthesis of open-framework materials based on principles of structural anti-types, in which the positions of the framework anions and cations are reversed (such as in fluorite, CaF₂, and anti-fluorite structures, Li₂O) has to our knowledge never been reported. Unlike classic zeotype frameworks, in which an anionic or neutral framework is templated by extra-framework cations or molecules, our anti-

[*] Prof. J. D. Martin, B. R. Leafblad Department of Chemistry North Carolina State University Raleigh, NC 27695-8204 (USA) Fax: (+1)919-515-5079 E-mail: jdmartin@ncsu.edu zeotype constructions, in which tetrahedral anions are linked by two-coordinate cations, can be utilized to prepare cationic frameworks templated by noncoordinating extra-framework anions. Such anion templating is expected to yield both novel open-framework structures and unique properties.^[7]

Previously, several metal-organic cationic frameworks have been prepared in which neutral, bidentate ligands link cationic metal centers into covalent networks. [4, 8, 9] However, in these metal-organic frameworks, the cationic metal centers are coordinatively saturated by the two-coordinate linker ligands such that the internal surface of the framework cavity which surrounds the anionic template consists of the neutral ligands. By contrast, in our anti-zeotype constructions, the internal surface of the open-framework voids will be composed of two-coordinate cationic linking units. This cationic surface of the framework void may be exploitable to increase anion-binding affinities.

Because of the utility of hydrogen bonding for the construction of supramolecular assemblies, dialkylammonium cations were examined as potential two-coordinate cations to link [MCl₄]ⁿ⁻ tetrahedral anions. In spite of the importance of hydrogen bonding between cations and anions for supramolecular assembly and molecular recognition in biological systems, to date only a small number of organic and metalorganic supramolecular hydrogen-bonded frameworks have been constructed using exclusively ionic components, [7, 10-12] compared with the number of hydrogen-bonded assemblies prepared using neutral molecules as donors and acceptors.[13-16] Nevertheless the strength of interionic hydrogen bonds of around 40-190 kJ mol-1[10] make such ionic constructions attractive for the preparation of more robust framework structures. In this present work, we exploit the hydrogen-bonding ability of dialkylammonium cations to link [CuCl₄]³⁻ tetrahedral anions into the novel anti-zeotype framework [{(H₂NEt₂)₂}₂(CuCl₄)]⁺, in which [AlCl₄]⁻ anions fill the framework void. This cationic partial structure is shown in Figure 1. Such hydrogen-bonded frameworks are not expected to provide the rigid structures found for covalent zeolite-type frameworks; however, Yaghi et. al. have recently demonstrated microporosity in a framework constructed from hydrogen-bonded metal-organic complexes.^[15]

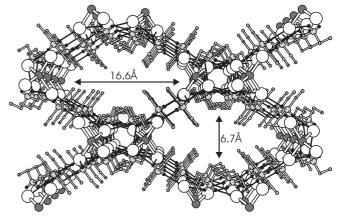


Figure 1. Cationic partial structure of **1**. The hydrogen-bonding contacts are indicated by solid lines. Cl: large open spheres, Cu: large black spheres, N: large gray spheres, C: small gray spheres, H: small black spheres.

^[**] This work was supported by the National Science Foundation, a CAREER award (DMR-9501370), and an instrumentation grant (CHE-9509532). J.D.M. is a Cottrell Scholar of the Research Corporation.

Slow cooling of a melt (250°C) of CuCl, AlCl₃, and H₂NEt₂Cl yielded [(H₂NEt₂)₄(CuCl₄)][AlCl₄] (1) as a singlephase, microcrystalline product, as confirmed by Guinier X-ray powder diffraction and elemental analysis. Single crystals suitable for X-ray diffraction studies were obtained from the reaction of CuCl, AlCl₃, and wet HNEt₂.^[17] In the crystal structure, the [AlCl₄]- tetrahedra exhibit ideal tetrahedral geometry with Al-Cl bond lengths of 2.1322(8) Å, and four Cl-Al-Cl angles of 109.36(4)° and two of 109.69(4)°. The [CuCl₄]³⁻ tetrahedra, however, exhibit a slight tetragonal elongation with a Cu-Cl bond length of 2.3761(7) Å, and two Cl-Cu-Cl angles of 104.82(2)° and four of 119.23(3)°. Interestingly the only short N-H···Cl contacts, indicative of hydrogen bonding, are to the [CuCl₄]³⁻ tetrahedra with Cl...H distances of 2.43-2.61 Å (Cl-N 3.2-3.3 Å). The shortest contacts of the ammonium cations to the aluminumbound chloride atoms are by the alkyl groups with distances of 3.9 Å between the aluminum-bound chloride and the methyl carbon atoms (Cl-N 4.5 Å). This is consistent with previous reports which indicate that the [AlCl₄] ion is a poor hydrogen-bond acceptor due to the highly Lewis acidic Al^{III} center.^[18] These same properties make [AlCl₄] a noncoordinating anion that is well suited as a framework template.^[19]

In the crystal structure of **1**, the dialkylammonium cations demonstrate a pairwise linkage between $[CuCl_4]^{3-}$ tetrahedra (Figure 2). Atom H(2) is hydrogen bonded to a single chloride ion at a distance of 2.43 Å, whereas H(1) is hydrogen bonded

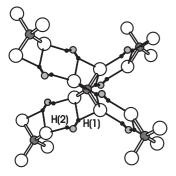


Figure 2. Representation of the $[\{(H_2NEt_2)_2\}_{4/2}(CuCl_4)]^+$ tetrahedral building blocks to highlight the hydrogen bonded connectivity. The ethyl groups have been removed for clarity.

to the edge of a neighboring [CuCl₄]³⁻ tetrahedron with Cl-H distances of 2.54 and 2.61 Å. Nevertheless, each pair of inversion-related diethylammonium cations exclusively connects two tetrahedral anions. Four such pairwise linkages nearest neighbor tetrahedra result $[\{(H_2NEt_2)_2\}_{4/2}(CuCl_4)]^+$ tetrahedral building blocks shown in Figure 2. These tetrahedral units are then assembled into a three-dimensional diamondoid network. For ease of visualization, each linking pair of ammonium cations is replaced by a sphere on the inversion center that relates them, and the [CuCl₄]³⁻ anion is represented by a sphere at the tetrahedral center in Figure 3, so that the " A_2T " ($A = [(H_2NEt_2)_2]^{2+}$, T =[CuCl₄]³⁻) anti-zeotype connectivity is readily apparent. A similar A₂T framework is observed for the structure of Cu₂O; however, in this case two such frameworks interpenetrate.^[20]

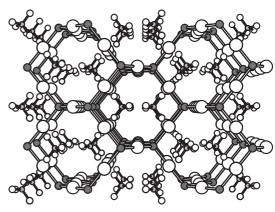


Figure 3. View of the diamondoid lattice of $\mathbf{1}$ in which the inversion-related pairs of $[H_2NEt_2]^+$ cations are represented as large open spheres and the $[CuCl_4]^{3-}$ anions are represented as dark spheres. The $[AlCl_4]^-$ anions template this hydrogen bonded network.

From this perspective it is clear that the cationic-framework partial structure of [{(H₂NEt₂)₂}₂(CuCl₄)]⁺ adopts the cristobalite-related C9 structure,[21] where the T-A-T angle is required to be 180° because of the pairwise connectivity of the ammonium cations. By contrast, a collapsed C9 structure is observed for cristobalite with a T-O-T angle of approximately 137°. The resulting set of channels, which run through the framework along a and b exhibit C-C and Cu-Cu crosschannel contacts of 6.7 Å and 16.6 Å, respectively. In 1 the ethyl groups of the dialkylammonium cations, as well as the [AlCl₄]⁻ anions, stuff and stabilize this expanded C9 structure type in the same fashion that (tBu)₂O stabilizes the expanded cristobalite-type framework of Cd(CN)2.[22] Numerous other stuffed cristobalite structures are common such as NaAlO₂^[23] and Na₂BeSiO₄, [24] which also exhibit ionic conductivity through the channel structure.

Experimental Section

All manipulations were performed under an atmosphere of dry nitrogen. AlCl₃ was purchased from Fluka and purified by literature procedures. $^{[25]}$ CuCl was prepared from Cu metal and CuCl₂ (Aldrich) according to literature methods. $^{[26]}$ H₂NEt₂Cl was dried overnight at 100 °C under vacuum. CuCl (44 mg, 0.447 mmol), AlCl₃ (60 mg, 0.447 mmol), and H₂NEt₂Cl (196 mg, 1.789 mmol) were mixed and added to a Pyrex ampoule, which was then evacuated and sealed. The reaction tube was heated to 250 °C for 12 h, and then cooled to room temperature at a rate of 10° h⁻¹. At room temperature a molten salt was produced which crystallized over a period of several days. Elemental analysis of the crystalline samples: calcd for $C_{16}H_{48}N_4AlCl_8Cu$: C 28.64, H 7.23, N 8.35; found: C 27.55, H 7.24, N 7.96.

Received: June 3, 1998 [Z11938IE] German version: *Angew. Chem.* **1998**, *110*, 3511 – 3513

Keywords: clathrates • crystal engineering • hydrogen bonds • template synthesis • zeolite analogues

^[1] D. W. Breck, Zeolite Molecular Sieves, Wiley, New York, 1974.

^[2] R. Szostak, Handbook of Molecular Sieves, Van Nostrand Reinhold, New York, 1992.

^[3] A. Corma, Chem. Rev. 1997, 97, 2373-2419.

^[4] C. L. Bowes, G. A. Ozin, Adv. Mater. 1996, 8, 13-28.

^[5] P. Feng, X. Bu, G. D. Stucky, Nature 1997, 388, 735-741.

COMMUNICATIONS

- [6] J. D. Martin, K. B. Greenwood, Angew. Chem. 1997, 109, 2162–2166; Angew. Chem. Int. Ed. Engl. 1997, 36, 2072–2075.
- [7] J.-M. Lehn, Supramolecular Chemistry: Concepts and Perspectives, VCH, Weinheim, 1995, pp. 31–35.
- [8] B. B. Gardner, D. Venkataraman, J. S. Moore, S. Lee, *Nature* 1995, 374, 792–795.
- [9] O. M. Yaghi, L. Hailian, T. L. Groy, *Inorg. Chem.* 1994, 36, 4292–4293.
- [10] C. B. Aakeröy, K. R. Seddon, Chem. Soc. Rev. 1993, 397 407.
- [11] M. C. T. Fyfe, P. T. Glink, S. Menzer, J. F. Stoddart, A. J. P. White, D. J. Williams, *Angew. Chem.* 1997, 109, 2158 2160; *Angew. Chem. Int. Ed. Engl.* 1997, 36, 2068 2070.
- [12] a) V. A. Russell, C. C. Evans, W. Li, M. D. Ward, Science 1997, 276, 575 579; b) V. A. Russell, M. D. Ward, Acta Crystallogr. Sect. B 1996, 52, 209 214.
- [13] Chem. Mater. 1994, 6 (special issue: Structure and Chemistry of the Organic Solid State).
- [14] M. J. Zaworotko, Chem. Soc. Rev. 1994, 283–288.
- [15] O. M. Yaghi, H. Li, T. L. Groy, J. Am. Chem. Soc. 1996, 118, 9096 9101.
- [16] S. B. Copp, K. T. Holman, J. O. S. Sangster, S. Subramanian, M. J. Zaworotko, J. Chem. Soc. Dalton Trans. 1995, 2233–2243.
- [17] Single crystal X-ray data of 1 ($C_{16}H_{48}AlCl_8CuN_4$) were collected at 298 K on an Enraf-Nonius CAD-4 diffractometer equipped with a Mo_{Ka} source and a graphite monochrometer. The colorless crystals $(0.3\times0.3\times0.1~\text{mm})$ exhibited tetrahedral symmetry, space group $I4_1/a$ (no. 88), a=12.8059(4), c=20.434(2) Å, V=3351.0(3) ų, Z=4, $\rho_{calcd}=1.33~\text{g cm}^{-1}$, $\mu(Mo_{Ka})=1.34~\text{cm}^{-1}$. A total of 3929 unique intensities with $2\theta<54^\circ$ were collected with a $\theta-2\theta$ scan mode. Full-matrix least-squares calculations, based on F, of the 1284

- observed unique reflections with $I_{\rm net} > 1.0 \sigma(I)$ and 117 variables were performed with the NRCVAX software package. All hydrogen atoms were located, and their positions refined. The structure was refined to a final model with R = 0.039 and $R_{\rm w} = 0.046$. Crystallographic data (excluding structure factors) for the structure reported in this paper have been deposited with the Cambridge Crystallographic Data Centre as supplementary publication no. CCD-101 662. Copies of the data can be obtained free of charge on application to CCDC, 12 Union Road, Cambridge CB21EZ, UK (fax: (+44)1223-336-033; email: deposit@ccdc.cam.ac.uk).
- [18] M. V. Gaudet, M. J. Zaworotko, P. S. White, *Inorg. Chem.* 1989, 28, 1191–1193.
- [19] The [AlCl₄]⁻ anion is reasonably considered a template for the structure of 1 since in its absence, CuCl+4(H₂NEt₂)Cl yields [H₂NEt₂]Cu₂Cl₃+3(H₂NEt₂)Cl; J. Yang, J. D. Martin, unpublished results.
- [20] P. Niggli, Z. Kristallogr. 1922, 57, 2359.
- [21] M. O'Keeffe, B. G. Hyde, Acta Crystallogr. Sect B 1976, 32, 2923 2936.
- [22] T. Kitazawa, T. Kikuyama, M. Takeda, T. Iwamoto, J. Chem. Soc. Dalton Trans. 1995, 3715 – 3720.
- [23] J. A. Kaduk, S.-Y. Pei, J. Solid State Chem. 1995, 115, 126.
- [24] S. Frostang, J. Grins, D. Loueer, P. E. Werner, Solid State Ionics 1988, 31, 131–138.
- [25] a) J. S. Wilkes, J. A. Levisky, R. A. Wilson, C. L. Hussey, *Inorg. Chem.* 1982, 21, 1263–1267; b) R. J. Gale, R. A. Osteryoung in *Molten Salt Techniques* (Eds.: D. G. Lovering, R. J. Gale), Plenum, New York, 1983, chap. 3.
- [26] G. B. Kauffman, L. Y. Fang, Inorg. Synth. 1983, 22, 101.